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The dynamical behavior of a one-dimensional inelastic particle system with particles of unequal mass
traveling between two walls is investigated. The system is driven by adding energy at one of the walls while
the other wall is stationary and does not add energy. By deriving analytic solutions for the periodic orbits of
this system, we show that there are a countable infinity of critical mass ratios at which the particle dynamics
become highly degenerate in the following sense. As the mass ratio passes through these critical points, large
numbers of stable periodic orbits can collapse onto a single trivial orbit. We show that the widely studied
equal-mass systems represent one of these critical points and are therefore such a degenerate case. We also
show that in the elastic limit the number of orbits that collapse onto the single trivial orbit can become
arbitrarily large.
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I. INTRODUCTION

Mechanical systems in which discrete masses interact
through inelastic collisions are extremely widespread in in-
dustrial applications. Examples include vibration hammers,
pile drivers, compacting machinery, and many others. Such
systems can often exhibit chattering behavior in which large
numbers of interactions between the masses occur in a rela-
tively short time. When such systems are driven, they may
exhibit periodic behavior and the control of such behavior
will frequently be crucial in operating machines. Obtaining
stable and consistent operating conditions that give rise to
simple repeatable periodic behavior that avoids chattering
can be very important in controlling machine wear and noise
production.

Following the groundbreaking works of Tonks �1� and
computer simulations �2,3�, the statistical dynamics of one-
dimensional particle chains has been widely studied �4�. In
recent years there has been significant interest in one-
dimensional models of granular materials, which has led to a
number of valuable insights. Mehta and Luck �5� and Luck
and Mehta �6� showed that a single particle moving on a
vibrating plate can give rise to dynamical behavior, such as
abrupt termination of period-doubling sequences. In the ab-
sence of boundaries, Cipra et al. �7� have considered the
stability of one-dimensional inelastic collapse. There have
also been a number of studies regarding the development of
equations to describe such systems at the continuum scale
�8–13�, and it is now recognized that one-dimensional sys-
tems behave fundamentally differently from particle systems
in two and three dimensions �14�. Although the principle
focus of most of these works has been macroscopic proper-
ties, it has become clear that a fundamental understanding of
the microscale dynamics is crucial �15,16�. In this vein, Du
et al. �8� showed that equal-mass particles placed between a
vibrating wall and a stationary reflecting wall lead to the
following phenomena. The particle nearest the oscillating
wall moves rapidly, whereas the remaining particles are typi-
cally trapped close to the stationary wall. The particle-scale
dynamics underlying this phenomenon in equal-mass particle
systems has been studied by Yang �17� who showed that the

periodic orbits may not be unique, and this makes such sys-
tems difficult to control. One-dimensional models have also
proved useful when considering signal transmission in
granular materials �18–20�.

In reality, the interaction of particles of unequal mass is
generally unavoidable. We note that in some situations mass
variations may not lead to qualitatively different behavior
�21�, but in harmonic oscillator chains rich behavior may
occur �22,23�. Therefore, a natural extension is to consider
systems with particles of unequal mass. It seems natural that
the type of motion observed in equal-mass systems, in which
most of the particles are trapped against the stationary wall,
may not occur when the masses differ. This raises the impor-
tant question as to whether the dynamics in the unequal-mass
case will exhibit any qualitative differences with the equal-
mass case. If any qualitative changes occur, the limit as the
masses become equal will be of special interest. Of particular
concern in such dynamical systems is whether unequal
masses can give rise to nonuniqueness and instability of
periodic orbits.

In this paper, we show that the well-studied simple orbit
in equal-mass systems is highly degenerate and hides many
complicated dynamical features of unequal-mass systems.
Even infinitesimal differences in the masses of the particles
can give rise to multiple stable periodic orbits that do not
exist in the equal-mass case. We show that the number of
stable periodic orbits becomes infinite as the coefficient of
restitution tends to unity. We carefully examine the limit as
the masses become equal and show that, in this limit, a large
number of periodic orbits collapse onto a simple orbit. Here,
the phenomenon of orbit collapse represents the coalescence
of several orbits onto a single orbit at a critical parameter
value. This phenomenon is unrelated to inelastic collapse
�7,24� in which particles experience an infinite number of
collisions in finite time.

II. FORMULATION AND PHENOMENA

The purpose of this paper is to study orbit collapse in
many-particle systems. However, before considering the gen-
eral system, we will study a two-particle system that has
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simple analytic solutions and exhibits many of the dynamical
features of many-particle systems. In particular, in Sec. VI,
we will show that there exists a simple relation between the
orbit collapse phenomenon in many-particle systems and that
in two-particle systems. We therefore focus on the motion of
two particles constrained on a line between two walls.

In granular materials, it is often the case that energy is
added through vibrations at one of the boundaries �25,26�.
Thus, we assume that the left wall executes a periodic mo-
tion and the right wall is fixed. We will refer to the left and
right walls as the “oscillating wall” and the “stationary wall,”
respectively �see Fig. 1�. For simplicity we adopt a “saw-
tooth” motion �27� for the oscillating wall, in which the wall
moves with a constant speed v over a distance a before ex-
ecuting an instantaneous jump back to its starting position.
This implies that any collision between a particle and the
oscillating wall must occur when the wall is moving with
speed v. We will further assume that the distance a is much
smaller than the size of the domain, and thus, at leading
order, all collisions with the oscillating wall must occur at
the same location.

Since the physical size of the particles does not play a role
in one-dimensional motion, we consider point particles. We
choose scales such that the distance between the walls, the
speed of the oscillating wall, and the mass of the left particle
are all unity. The mass of the right particle is m.

Collisions between particles are dissipative with a con-
stant coefficient of restitution e. We will denote the coeffi-
cient of restitution between the right particle and the station-
ary wall as ew. It is straightforward to perform our analysis
for an arbitrary coefficient of restitution for collisions
between the left particle and the oscillating wall, but for
simplicity we will take this coefficient to be unity.

When the right particle hits the stationary wall, it simply
bounces inelastically and the velocity is updated using the
operator R defined by

R�vL

vR
� = �1 0

0 − ew
��vL

vR
� = � vL

− ewvR
� , �1�

where vL and vR are the velocities of the left and right par-
ticles, respectively. When the left particle hits the oscillating
wall it gains kinetic energy. In the frame of reference of the
stationary wall, the left particle bounces back elastically
from the oscillating wall and the velocity is updated using
the operator L defined by

L�vL

vR
� = �2 − vL

vR
� . �2�

When two particles collide, momentum is conserved and
their new relative velocity is just −e times their old relative

velocity. The velocities are hence updated using the operator
C defined by

C�vL

vR
� =

1

1 + m
�1 − em m�1 + e�

1 + e m − e
��vL

vR
� . �3�

Numerical simulations for this system were performed by
calculating the times for each of the three possible collisions
�particle-particle, particle-stationary wall and particle-
oscillating wall� and finding the minimum among these three
collision times. The particle positions and velocities are
then updated using the appropriate choice among the three
collision rules given by the equations �1�–�3�.

A. Mechanical description of periodic orbits

We begin by presenting some examples of simple orbits
that give an indication of the types of phenomena that can
occur. We also give a mechanical explanation of some of the
orbit transitions that occur if the mass ratio of the two par-
ticles is varied. These orbits will serve as the building blocks
for analyzing more complicated orbits.

In Fig. 2, we show examples of trajectories that occur for
e=0.5 and various mass ratios m. For two particles of equal
mass, m=1, after a few initial collisions the dynamics rapidly
adopt the following simple sequence, which is made up of
four collisions �Fig. 2�a��. The right particle hits the station-
ary wall, bounces back inelastically from it, and collides with
the left particle. Then, the left particle moves toward the
oscillating wall, hits it, bounces back with increased kinetic
energy, and then hits the right particle. This sequence is one

FIG. 1. �Color online� A schematic representation of a two
particle unequal-mass system.

FIG. 2. The trajectories of two inelastic particles with coeffi-
cient of inelasticity e=0.5. The mass ratios m in �a–e� are 1, 1.1,
0.7, 0.7, and 1.6, respectively. The horizontal axis represents dimen-
sionless time, and the vertical axis represents the dimensionless
location in the domain. The oscillating wall is located at zero, and
the stationary wall at 1. The trajectory of the right particle is plotted
with a solid line, and the trajectory of the left particle is plotted with
a dotted line. �a� has sequence CRCL, �b� also has sequence CRCL,
�c� has sequence RCRCL, �d� has sequence �RCRCL��CRCL�, and
�e� does not evolve to any low-order periodic orbit during the time
of the simulation.
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period of the motion, and the period repeats. Each sequence
can be represented symbolically as CRCL, where the se-
quence of collisions is read from right to left. After each
period of the motion, the right particle moves closer to the
stationary wall than before. For all initial conditions, the
right particle will eventually be trapped against the stationary
wall. The right particle will then have zero velocity except at
the instant when it is involved in collisions.

This periodic collision sequence CRCL also occurs in the
system in which the left particle is slightly heavier than the
right particle, that is m�1 �see Fig. 2�b��. The only differ-
ence is that the right particle is no longer trapped against the
stationary wall. As we will show later, in unequal mass sys-
tems, the right particle has sufficient momentum to move
away from the stationary wall after colliding with it. There-
fore, the inter-particle collisions occur at a finite distance
away from the walls. This is in contrast to the equal-mass
case. As m decreases towards unity, the locations of both of
the inter-particle collisions will become increasingly close to
the stationary wall. When m=1, all inter-particle collisions
will occur at the stationary wall.

However, when m is slightly smaller than unity, the se-
quence CRCL can not be a periodic orbit. The reason that the
CRCL sequence exists when m�1, but does not exist for
m�1 can be understood by considering the velocity of the
right particle after the last interparticle collision, C, in the
CRCL sequence. In the m=1 case, the resulting velocity of
the right particle is zero and so the next collision cannot be
between the right particle and the stationary wall. However,
the situation is different for m�1. After the final interparticle
collision in the sequence, the right particle will have a non-
zero velocity traveling toward the stationary wall. Each col-
lision sequence moves the locations of both of the interpar-

ticle collisions closer to the stationary wall. Eventually,
following a CRCL collision block, the right particle will be
sufficiently close to the stationary wall and have sufficient
speed to collide with the stationary wall before any further
interparticle collision can occur. Hence, an extra collision
operator R needs to be added to the sequence and the CRCL
orbit can no longer exist.

When m is slightly smaller than unity, different initial
conditions evolve to one of many possible orbits. We illus-
trate this phenomenon in Figs. 2�c� and 2�d� for the case of
e=0.5. For the simpler orbit �Fig. 2�c��, the dynamics is
similar to the case of m�1 �Fig. 2�a� and 2�b��, but an extra
collision with the stationary wall is needed. This yields an
RCRCL orbit.

The second periodic orbit �Fig. 2�d�� contains four inter-
particle collisions and is given by �RCRCL��CRCL�. Here
we have grouped the collisions using brackets to emphasize
that this sequence is composed of the two subsequences cor-
responding to Figs. 2�b� and 2�c�. The determination of or-
bits that are composed of more collisions will be presented in
Sec. III.

For larger values of m, the observed motion is not as
simple and there is no straightforward method to determine if
the motion is aperiodic or periodic with an extremely long
period. An example of this is shown in Fig. 2�e�. In the rest
of this paper, we will only consider motion that is periodic.

B. Description of the bifurcation structure of orbits

To further investigate the nature of the periodic orbits, we
fix e=0.5 and vary m. For a given value of m, we choose a
variety of random initial conditions and perform simulations
until a periodic orbit is achieved. In Fig. 3, we plot the

FIG. 3. �Color� The dimen-
sionless locations of interparticle
collisions are plotted against the
modified mass ratio �m−1� / �m
+1� for e=0.5. Since orbits typi-
cally have a number of interpar-
ticle collisions, orbits with differ-
ent numbers of interparticle
collisions are distinguished by us-
ing different colors. The phenom-
enon of orbit collapse refers to the
situation in which different orbits
merge into a single orbit at certain
critical mass ratios. An example of
this phenomenon occurs at �m
−1� / �m+1�=0, where the orbits
containing two interparticle colli-
sions �red curves� and four inter-
particle collisions �magenta
curves� that exist for �m−1� / �m
+1� slightly below zero collapse
onto an orbit contain two interpar-
ticle collisions �red curves� that
exists for �m−1� / �m+1� slightly
above zero.
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locations x at which interparticle collisions occur in periodic
orbits against the mass ratio �m−1� / �m+1�. The oscillating
wall is located at x=0, and the stationary wall is located at
x=1. Since a single orbit will typically involve a number of
interparticle collisions, each orbit is represented by a number
of points. For example, in Fig. 3, when �m−1� / �m+1�=
−0.6, there exists an orbit with three interparticle collisions
that occur at locations x=0.31, 0.74, and 0.77. We plot orbits
that contain different numbers of interparticle collisions us-
ing different colors. This allows us to easily distinguish or-
bits with different numbers of interparticle collisions when
multiple orbits occur at a given mass ratio. For example,
in the range −0.2� �m−1� / �m+1��0 two distinct periodic
orbits coexist, an orbit with two interparticle collisions
�shown in red� and an orbit with four interparticle collisions
�shown in magenta�. We note that this representation does
not contain all the information required to reconstruct the
orbit because the collision sequence is not always obvious;
but as we will see below, this method of presenting the data
allows us to understand a number of important features of
the dynamics.

From Fig. 3, it is clear that this apparently simple
mechanical system can have extremely complicated dynam-
ics. For �m−1� / �m+1��1/9=0.1111, the dynamics is rela-
tively simple and most of the observed orbits contain
relatively few collisions. However, for �m−1� / �m+1��1/9,
there are typically a large number of long orbits that coexist.
In Sec. III, we will show that this transition occurs when
�m−1� / �m+1�= �1−e�2 / �1+e�2=1/9.

From Fig. 3, we also see that as we vary the mass ratio m
the collision locations can change discontinuously in
four distinct ways. The first type of transition occurs when
all interparticle collisions are located at the stationary wall.
An example of this type of transition can be seen at
�m−1� / �m+1�=0. For 0� �m−1� / �m+1��0.1, we observe
a single orbit with two interparticle collisions �the two red
lines�. This is the orbit with a collision sequence CRCL as
shown in Fig. 2�b�. As m decreases toward unity, both inter-
particle collisions become increasingly close to the stationary
wall, as one would expect from the discussion in Sec. II A

For values of �m−1� / �m+1� slightly below zero, which
corresponds to m slightly below unity, we observe two pos-
sible orbits. One of them has two interparticle collisions rep-
resented by the two red lines that exist approximately in the
range −0.45� �m−1� / �m+1��0. This corresponds to the
RCRCL orbit �Fig. 2�c��. The other has four interparticle
collisions represented by the four magenta lines that exist
approximately in the range −0.25� �m−1� / �m+1��0. This
corresponds to the �RCRCL��CRCL� orbit �Fig. 2�d��. For
both of these orbits, the positions of all the interparticle col-
lisions become increasingly close to the stationary wall as m
increases toward unity and both orbits no longer exist for
m�1. This represents a collapse of two periodic orbits
�RCRCLCRCL and RCRCL� onto a single orbit �CRCL�.
Later we will show that, at certain parameter values, an ar-
bitrarily large number of periodic orbits can collapse onto a
single trivial orbit.

This type of transition occurs at an infinite set of other
critical mass ratios in the range �m−1� / �m+1��0, such as

�m−1� / �m+1�=−0.45,−0.65,−0.77,−0.81, . . .. It is obvious
that, in any periodic orbit, the left particle must experience at
least one collision with the oscillating wall, which will pro-
pel it to the right. Eventually, it must change direction and
return to the oscillating wall. In order to change the direction
of the left particle, the right particle must repeatedly collide
between the stationary wall and left particle. The lighter the
right particle is, the smaller the change of the momentum in
each interparticle collision will be. Consequently, more
collisions between the right particle and the right wall will be
needed to turn around the left particle. For example, in
the vicinity of �m−1� / �m+1�=−0.5, there are three cyan
curves in Fig. 3 that represent orbits with three interparticle
collisions. As m decreases through the critical value of
�m−1� / �m+1�=−0.5, a CRCRCL orbit changes into a
RCRCRCL orbit. Similar behavior can also be observed for
the magenta orbit near �m−1� / �m+1�=−0.7, where a
CRCRCRCL orbit changes to an RCRCRCRCL orbit. In
fact, there are an infinite number of such critical values
where a �CR�NCL orbit changes to an R�CR�NCL orbit for
any integer N. For the value of e chosen for the figure, there
is only a single orbit on either side of the critical values
�m−1� / �m+1�=−0.5,−0.7, . . .. Thus, unlike the transition at
�m−1� / �m+1�=0, there is no collapse of multiple orbits
onto a single orbit. However, for values of e closer to unity,
we can observe multiple orbits collapsing onto a single orbits
at critical values of �m−1� / �m+1� in a similar way to the
transition that occurs at �m−1� / �m+1�=0.

The second type of transition is that in which interparticle
collisions occur at the oscillating wall. An example of this
type of transition can be seen when �m−1� / �m+1� is �0.1,
where the two red lines represent a CRCL orbit. As
�m−1� / �m+1� increases, the velocity of the left particle fol-
lowing the first interparticle collision in the CRCL sequence
becomes smaller. This means that interparticle collisions oc-
cur increasingly close to the oscillating wall. At a critical
value of m, the velocity of the left particle following the first
interparticle collision becomes zero and the left particle be-
comes trapped against the oscillating wall. For values of m
above the critical value, this orbit can no longer exist.

A second example of this type of transition occurs near
�m−1� / �m+1�=0.55, where the three cyan lines represent a
CLCRCL orbit. A third example is the orbit represented by
the four magenta lines in the vicinity of �m−1� / �m+1�
=0.7. This corresponds to the CLCLCRCL orbit. In fact,
careful examination shows that these orbits are part of an
infinity family of orbits of the type CR�CL�N. These orbits
have multiple collisions with the oscillating wall and only
one collision with the stationary wall. All of these orbits
share the property that as m increases toward a critical value,
all interparticle collisions occur at the oscillating wall. How-
ever, unlike the first type of transition, this transition
does not simply add an extra collision with the oscillating
wall to obtain a low-order orbit, but instead a transition to
very high-order periodic orbits occurs.

The third type of transition occurs when some, but not all,
of the interparticle collisions occur at the stationary wall. An
example of such an orbit can be seen from the black curves
in the vicinity of �m−1� / �m+1�=−0.25. This orbit contains
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five interparticle collisions and has the form CRCLCRCRCL.
This orbit contains two collisions between the left particle
and the oscillating wall and three collisions between the right
particle and the stationary wall. This transition differs from
the first type of transition in that at the critical value of m the
velocities of the particles near the stationary wall are always
nonzero. As m decreases through the critical value, rather
than adding a collision between the right particle and the
stationary wall, these orbits cease to exist for values of m
below the critical value.

The fourth type of transition occurs when orbits disappear
even when all interparticle collisions occur at finite distances
away from both walls. This can be clearly seen in Fig. 3,
where below a critical value of �m−1� / �m+1��−0.45, the
RCRCL orbit no longer exists. At this transition point all
interparticle collisions occur at finite distances away from
the walls. Hence, this transition is fundamentally different
from the other three types of transitions. In Secs. III we will
show that at this transition point the orbit becomes unstable
to small perturbations.

III. ANALYTIC CONSTRUCTION OF PERIODIC ORBITS

If the particles execute a given periodic sequence of col-
lisions, one simply needs to solve a set of linear equations to
determine the velocities and locations of the collisions. The
nonlinearity in the system arises exactly because the se-
quence of collisions is unknown. This is because finding the
appropriate collision requires choosing the minimum time
among the three possible collisions �R, L, and C�, and this is
inherently nonlinear. However, not all collision sequences
will be feasible, since collision sequences must only contain
collisions between objects that are moving relatively toward
each other. Even if the sequence gives consistent velocity
directions, one still needs to check whether the order of col-
lisions is consistent. In the case of two particles, this essen-
tially reduces to checking whether collisions between the
two particles occur between the two walls.

For analytical simplicity, we consider the case ew=1 in
which the stationary wall is elastic. The extension to general
values of ew is straightforward, but the formulas become
considerably more complicated while the phenomenon re-
mains the same. When ew=1, the operator L can be written
as

L�vL

vR
� = �2

0
� − R�vL

vR
� . �4�

In a system with two particles, the structure of allowable
periodic orbits is relatively simple. Any sequence must in-
clude at least one collision between particles and at least one
collision with each wall. Between any two interparticle col-
lisions, there are three possibilities: a collisions with the os-
cillating wall �L�, a collision with the stationary wall �R�, or
collisions with both walls �LR or RL�. In determining the
velocities, the blocks RL and LR are equivalent and, hence-
forth, we denote both by RL. This gives rise to only three
basic building blocks from which any sequence must be con-
structed, which we denote as 	CL ,CR ,CRL
. In addition, the

dynamics for any collision sequence constructed from a
number of repetitions of a subsequence must exhibit the re-
peated dynamics of the subsequence. For example, the
dynamics of an RCLRCL orbit must be made up of two
identical sets of the solution of an RCL orbit. This property is
just a simple consequence of the linearity of the operators R,
L, and C.

Given a periodic sequence S, the periodicity of the veloci-
ties requires

S�vL

vR
� = �vL

vR
� . �5�

Using �1�, �3�, and �4�, this linear system can be rewritten as

�I − S���vL

vR
� = S��2

0
� ,

where I is the identity matrix and S� and S� are matrices
constructed from products of R and C. The matrix C has two
eigenvalues, −e and 1, and one can show that all eigenvalues
of S� must have magnitude less than unity if e�1. There-
fore, I−S� must have eigenvalues with a magnitude larger
than zero, and thus, det�I−S���0. Hence, the linear system
for the velocities must always have a unique solution. How-
ever, not all sequences are consistent because the order of
collisions assumed in a sequence may be incompatible with
the collision rules. Therefore, we need to check that the par-
ticle velocities are consistent with the collision sequence and
that the location of all collisions are within the domain.

Given a collision sequence that contains n interparticle
collisions, we solve the above linear system and subse-
quently determine the particle velocities after the ith colli-
sion, which we denote by vL

�i� and vR
�i�. For a given collision

block 	CL ,CR ,CRL
, we can then compute the transit times
from one collision location to the next for each of the two
particles. We denote the location of the ith interparticle col-
lision by p�i�, the time between the ith and the �i+1�th inter-
particle collisions by t�i�, and the velocities of the left and
right particles after the ith collision by vL

�i� and vR
�i�. For the

RC collision block, the transit time for the left particle to
move directly from p�i� to p�i+1� is simply t�i�= �p�i+1�

− p�i�� /vL
�i�. Since the right particle will collide with the sta-

tionary wall, its transit time is t�i�= ��1− p�i+1��+ �1
− p�i��� /vR

�i�. By eliminating t�i� from the above two expres-
sions, we obtain an expression for the location of the
�i+1�th interparticle collision in terms of the location of the
ith interparticle collision

p�i+1� = �vR
�i� − vL

�i�

vL
�i� + vR

�i��p�i� +
2vL

�i�

vL
�i� + vR

�i� .

Similar expressions can be obtained for the collision blocks
CL and RCL. In general, for a given collision sequence,
the location of each interparticle collision can be written
as a simple linear function of the location of the previous
interparticle collision

p�i+1� = Ai+1p�i� + bi for i = 1, . . . ,n , �6�

where An+1=A1 and
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Ai =
vR

�i� − vL
�i�

vL
�i� + vR

�i� , bi =
2vL

�i�

vL
�i� + vR

�i� , for CR collisions

Ai =
�vL

�i� − vR
�i���vL

�i� − 2�
vR

�i��vL
�i� + vR

�i� + 2�
, bi = 0, for CL collisions

Ai =
�vR

�i� − vL
�i���vL

�i� − 2�
vL

�i��vR
�i� − vL

�i� + 2�
,

bi =
2�2 − vL

�i��
�vR

�i� − vL
�i� + 2�

, for RCL collisions. �7�

After substituting the velocities obtained by solving �5� into
�7�, Ai and bi become functions of m and e only.

If the sequence represents a periodic orbit, then p�n+1�

= p�1�. Thus, after composing all contributions from all colli-
sions, we obtain p�1�=Ap�1�+b, where A=�i=1

n Ai and b
=�i=1

n �� j=0
i−1Aj�bi are constants that depend only on m and e.

Here we define A0=1. Finally, even if the locations are con-
sistent, we still need to check that the periodic orbit is stable
which requires A  �1.

The nature of the instability can be understood by consid-
ering the simple case of an CRL orbit. For this orbit, �6�
reduces to

p�2� = Ap�1� + b and A =

1

�Cv�R
+

1

− �Cv�L

1

vL
+

1

− vR

, �8�

where b is a constant that is independent of p�1� and p�2�.
Stability requires that A  �1. After colliding with the left
particle and the stationary wall, the right particle will have
velocity �RCv�R=−�Cv�R. Since the orbit is periodic, we
have vR=−�Cv�R. On the other hand, the oscillating wall
adds energy to the left particle. Therefore, after the collision
with the oscillating wall, vL must be greater than its mag-
nitude before the wall collision, �Cv�L, i.e., vL  � �Cv�L.
Since vL�0 and �Cv�L�0, we conclude that −�Cv�L�vL.
Hence, �8� implies that A�−1 and the return map �8� will
give rise to growth of any initial perturbation away from the
fixed location.

We now briefly explain the physical mechanism that un-
derlies this instability. Essentially, the instability occurs be-
cause the time interval between two interparticle collisions is
dominated by the time needed for the left particle to move to
the oscillating wall. Thus, a small movement in the initial
location of the collision towards �away from� the oscillating
wall implies that the left particle will collide with the oscil-
lating wall slightly earlier �later�. Consequently, the left par-
ticle will achieve the higher velocity earlier �later�. Since the
right particle travels with a fixed speed, the next interparticle
collision will occur on the other side of the equilibrium point
at a distance farther from the equilibrium point. The process
repeats itself, and the distance from the fixed point will grow.
Therefore, instability can develop in the locations of the
collisions.

For longer orbits, the mechanism is similar. The stability
depends on the magnitude of the product A=A1A2A3 . . .An.
Components of the orbits where the instability grows
�Ai  �1� can be offset by components of the orbit where the
instability decays �Ai  �1� to yield an overall stable orbit.

In the following, we give some simple examples of this
method of constructing periodic orbits. The simplest con-
ceivable orbit contains three collisions, namely, CRL. The
above argument demonstrated that this orbit is unstable for
all values of m and e. It is also trivial to show analytically
that CRL is unstable following the procedure outlined above.

We now focus on the next few simple orbits. There is only
one orbit that contains four collisions, namely, CRCL. Using
the above procedure, it is straightforward to show that the
velocities and locations of the collisions are consistent and
the solution is stable if 1�m�e�1+e2� / �2e�. We now give a
simple physical explanation of this restriction to illustrate the
different types of transitions that can occur. If the lower
bound is violated, i.e., if m�1, then the right particle will
collide with the stationary wall before experiencing an inter-
particle collision. If the upper bound is violated, i.e., if
m� �1+e2� / �2e�, the left particle will collide with the oscil-
lating wall before experiencing the interparticle collision. It
is also straightforward to check that the solution will be
stable only when m� �1+e2� / �2e�.

Following the same procedure, we can study periodic or-
bits that contain five collisions. There are two possible five-
collision orbits: one is RCLCL, which can never be both
consistent and stable; and the other is RCRCL, which can be
realized if the following three conditions are satisfied:

m � 1, m �
1 − e

1 + e
� M1 and m �

1 + e2

1 + 4e + e2 � M2.

The first condition ensures the velocity of the right particle is
moving toward the stationary wall after the second interpar-
ticle collision. The second condition ensures that the left par-
ticle collides with the oscillating wall before experiencing an
interparticle collision. The third condition ensures that the
orbit is stable. For e��2−1 �as is the case in Fig. 3, where
e=0.5�, the stability condition is the relevant lower bound for
m. The RCRCL orbit becomes unstable and disappears at a
critical value of m=M2. We note that the orbit disappears
with all interparticle collisions occurring at finite distances
away from the walls and is an example of the fourth type of
transition. However, for e��2−1, the consistency condition
is the relevant lower bound and, thus, orbits of this type will
end with an interparticle collision occurring at the oscillating
wall at m=M1.

Higher-order periodic orbits can be analyzed in the same
way. We will pursue such orbits in detail in Sec. IV for the
collapse point near m=1 and briefly study some of the other
collapse points in Sec. V.

IV. MULTIPLE ORBITS NEAR THE COLLAPSE POINT
AT m=1

The numerical simulations shown in Figs. 2�c� and 2�d�
have illustrated that multiple periodic orbits exist for values
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of m�1. The two orbits �shown in Figs. 2�c� and 2�d�� are
given by RCRCL and �RCRCL��CRCL�, respectively. As
m→1, the locations of all interparticle collisions in both or-
bits tend to the stationary wall. For values of m slightly
greater than one, the two orbits change and undergo the fol-
lowing transformations RCRCL→CRCL and �RCRCL�
��CRCL�→ �CRCL��CRCL�. Since the problem is linear,
repeated orbits are identical to their building blocks, and
thus, the two orbits CRCL and �CRCL��CRCL� are the same.

We are naturally led to consider an orbit �for m�1� made
up of N blocks of �CRCL�, which we denote as �CRCL�N. As
m decreases below unity, we know that this orbit is no longer
consistent. However, by replacing one or more of the N
blocks with �RCRCL�, we may be able to obtain a consistent
and stable orbit. We begin by considering orbits in which we
replace only one of the �CRCL� blocks with RCRCL to ob-
tain a collision sequence of the form �RCRCL��CRCL�N−1.
Here we have used the fact that since the orbit is periodic, it
is irrelevant which CRCL block is replaced by CRCRL. Us-
ing the method developed in Sec. III, we can construct such
orbits and check their consistency and stability.

We denote the vector v= �vL ,vR�T and 2= �2,0�T, where T
denotes transpose. If we consider the operators R and C to be
matrices, then the operator L can be written as 2−Rv=R�2
−v�. The condition that the velocities must be periodic is
given by �RCRCL��CRCL�N−1v=v. Multiplying both sides
by R, we obtain �CRCL�Nv=Rv. Replacing the first L opera-
tor by R�2−v� yields �CRCL�N−1�CRCR��2−v�=Rv. After
repeatedly replacing the L operators, we obtain

�R − �− RCRC�N�v = �
i=0

N−1

�− RCRC�i2 .

After solving this equation for v, we can calculate the loca-
tions of the collisions. For arbitrary values of m, the solution
can be expressed symbolically, but the expression is quite
complicated and omitted here. We are particularly interested
in understanding why the orbits collapse near the point
m=1 and the qualitative difference between m�1 and
m�1. We therefore consider the case when m−1 is small
and expand all quantities in powers of m−1. After calculat-
ing the locations at which interparticle collisions occur, we
see that as e→1, the location of the final interparticle
collision in the only �RCRCL� block will have the largest
value. This is because each of the �CRCL� blocks pushes the
locations of the interparticle collisions toward the right.

After some algebra, we find that in the limit m→1, the
stability condition is given by A=−eN. Thus, this type of
orbit is always stable, and it is easy to show that the veloci-
ties are always consistent with the collisions. Thus, all that
remains to be checked is that the interparticle collisions oc-
cur between the walls. Some algebra reveals that the location
of the first interparticle collision in the sequence occurs at a
location given by

p�1� = 1 + �m − 1�S�1� + O�m − 1�2,

where

S�1� =
�1 + e�3�1 − e2N − 2NeN�1 − e��

4e�1 − e�2�1 + eN�2 .

One can show that S�1��0 for 0�e�1, and thus, in the limit
as m tends to unity from below, p�1��1. Therefore, in this
limit in which m�1, the location of the first interparticle
collision will occur between the two walls. However, for
m�1, the location will occur behind the stationary wall and,
therefore, orbits of this type can never occur for m�1.

Similarly, we find that the location at which the final col-
lision in the sequence occurs �that is the 2Nth collision� is
given by

p�2N� = 1 + �m − 1�S�2N� + O�m − 1�2,

where

S�2N� =
�1 + e�3�e2N − 1 + 2NeN−1�1 − e��

4�1 − e�2�1 + eN�2 .

For the orbit to be consistent when m�1 �that is, all the
collisions occur between the two walls�, we require that
S�2N��0. Some algebra also reveals that if S�2N��0 and
S�1��0, then all other interparticle collisions will be located
between the locations of the first and last interparticle colli-
sions. Hence, a necessary and sufficient requirement for con-
sistency is m�1 and S�2N��0.

The slope S�2N�→N /2�0 in the limit e→1, and thus, for
e sufficiently close to unity, S�2N��0 and the orbit will be
consistent. The slope can only change sign at the zeros of the
polynomial,

1 − e2N − 2NeN−1�1 − e� .

For N=1, we immediately see that the RCRCL orbit will
exist for all values of e. In the case of N=2, we can show
that the �RCRCL��CRCL� orbit can only exist for values of
e��2−1=0.414. . .. For larger values of N, we must solve a
polynomial with degree larger than 4, and thus, in general,
no analytic expression for the threshold can be obtained.
However, as N→� this polynomial has a root near unity. A
straightforward asymptotic expansion gives the critical value
of the restitution coefficient

eN = 1 −
3

N2 + O� 1

N4� .

Asymptotically, eN is an increasing function of N, and thus, if
the Nth orbit exists, then all lower orbits must also exist.
Hence, asymptotically, the number of periodic orbits will be
at least of order �3/ �1−e� as e→1. Therefore, as e→1, the
number of periodic orbits that exist for m�1 will tend to
infinity. However, when m=1, all periodic orbits collapse
onto one orbit, namely, CRCL.

V. MULTIPLE ORBITS NEAR OTHER COLLAPSE
POINTS

Figure 3 shows that the phenomenon of orbits collapsing
that occurs at m=1 also occurs for an infinite set of mass
ratios. These collapse points can be seen in Fig. 3 near �m
−1� / �m+1�=−0.45, or equivalently m=0.38 �three cyan
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curves�, �m−1� / �m+1�=0.65, or equivalently m=0.21 �four
magenta curves� and at an infinite number of similar points
as m→0. A detailed investigation of the orbits shows that
at these transitions the �CR�MCL orbit changes to
�CR�MCRL. As in the m=1 case, for e sufficiently close
to one, we can also observe the phenomenon of orbits of
the type ��CR�MCL�N changing to orbits of type
�CR�MCRL��CR�MCL�N−1. For M =2, which represents the
CRCRCL orbit, we find that the collapse point occurs at

m =
1 + 3e + e2 − 2�e�1 + e�2

e2 + e + 1
.

As e→1, this collapse point tends to m=1/3=0.3333. . .. For
M =3, which represents the CRCRCRCL orbit, we find that
the collapse point occurs at

m =
e2 + 4e + 1 − 2�2e�1 + e�

e2 + 1
.

As e→1, this collapse point tends to m=3−2�2=0.1716. . ..
For M =4 and 5, the expressions for the critical points as
functions of e require the solution of high degree polynomi-
als, but in the limit as e→1 the critical mass ratios are
1−2/�5=0.1055. . . and 7−4�3=0.0718. . ., respectively. For
M �6, even the limiting values require the solution of high
degree polynomials, and thus, no analytic expressions can be
obtained. Nevertheless, numerically it poses no challenges,
and we can show that the critical mass ratio tends to zero as
M increases.

Furthermore, for M =2, we can show that the N=2 orbit
can only exist if e� �3−�8�1/3=0.55567. . .. For all higher
values of M and N, the determination of these critical points
requires the solution of high degree polynomials. For any
given value of M the behavior for larger N can be determined
numerically and is similar to the m=1 case. We also find that
the critical value of the restitution coefficient increases to-
ward unity as N increases. Thus, as e→1, we still obtain an
infinite number of periodic orbits in the vicinity of the col-
lapse points. We note that at these collapse points the masses
of the particles are not equal.

We now turn our attention to the second type of transition.
For m�1, there are also an infinite number of critical values,
but in this case the locations of all interparticle collisions
occur against the oscillating wall. These orbits have the
form CR�CL�M. For M =1, the critical value is at m= �1
+e2� / �2e� and can be seen in Fig. 3 near �m−1� / �m+1�
=1/9=0.1111 �two red curves�. For M =2, the critical value
is at m= �1+e+e2� /e and can be seen in Fig. 3 near
�m−1� / �m+1�=5/9=0.5555 �three cyan curves�. Longer
orbits with larger values of M require the solution of high
degree polynomials, and no analytic expressions can be
obtained.

As the mass ratio tends to these critical values from be-
low, the velocity of the left particle following the final inter-
particle collision in the periodic sequence tends to zero. This
means that the left particle becomes trapped increasingly
close to the oscillating wall. If the mass ratio exceeds this
critical value, then the collision location moves behind the

wall. To resolve this, by analogy with the collapse points at
the stationary wall, one might naively expect that the
CR�CL�M orbit would add an extra collision with the oscil-
lating wall to form a CRL�CL�M orbit. However, a calcula-
tion similar to the one in Sec. IV shows that such orbits can
never be realized. Therefore, the type of transitions described
in Sec. IV, in which an infinite set of periodic orbits collapse
at the stationary wall, cannot exist at the oscillating wall.

It is easy to understand the fundamental difference be-
tween the case in which the collapse point occurs at the
stationary wall and that at the oscillatory wall. As the mass
ratio decreases toward any of the collapse points at the sta-
tionary wall, the velocity of the right particle following the
final interparticle collision in the sequence tends to zero. If
we slightly decrease the mass ratio below the collapse point,
then the collision sequence will no longer be consistent and
another collision with the stationary wall will be added. The
velocity of the right particle after reflection is close to zero
since its incoming velocity was close to zero. Hence, adding
this collision does not result in any discontinuous change in
momentum. We therefore expect that the addition of the ex-
tra collision would give rise to a collision sequence whose
collisions were close to that of the degenerate orbit.

However, for a collapse point at the oscillating wall, the
situation is quite different. As the mass ratio increases toward
any of the collapse points at the oscillating wall, the velocity
of the left particle following the final interparticle collision in
the sequence tends to zero. But when the system adds an-
other collision with the oscillating wall, the left particle gains
a large momentum impulse, and thus, the orbit will experi-
ence a large discontinuous change in energy. We therefore
expect the resulting orbit to be quite different from the de-
generate orbit, and such orbits may not be consistent or
stable.

Finally, we consider the third type of transition. There
also exist some orbits in which some of the interparticle col-
lisions occur at the stationary wall and the remaining inter-
particle collisions occur a finite distance from the wall. An
example of this type of orbit is the five black curves near
�m−1� / �m+1�=−0.25 in Fig. 3. This type of transition is
qualitatively different from the first type of transition in
which all interparticle collisions occur at the stationary wall.
This is because the right particle always has nonzero velocity
for the third type of transition but attains zero velocity for the
first type of transition. For the third type of transition, the
addition of an R operator to the collision sequence will cause
a discontinuous change in momentum, which leads to a dis-
continuity in the collision locations. We therefore expect any
resulting orbit to be quite different from the degenerate orbit.
That is why these isolated orbits end abruptly with no appar-
ent continuation. For the first type of transition, the addition
of an R operator will not cause any discontinuous momentum
change, and thus, the collision locations will be the same.

VI. MULTIPLE PARTICLES

We now consider a system containing P particles with
different masses. We index the particles from left to right by
i=1, . . . , P, let the mass of the ith particle be mi, and denote
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the collision operator between the ith and �i+1�th particles
as Ci. We will assume that the inelasticity in collisions be-
tween the ith and the �i+1�th particle is characterized by a
constant coefficient of restitution, ei. We also assume that
collisions between the Pth particle and the stationary wall
have coefficient of restitution ew.

Numerical simulations show that systems with more than
two particles exhibit similar behavior to the system with two
particles. To illustrate this, we choose an example with four
particles and take e1=e2=e3=0.8 and ew=1. If we choose the
mass ratios mi+1 /mi to be certain critical ratios, we obtain the
situation in which all interparticle collisions collapse against
the stationary wall. In this case, the critical mass ratios are
m1 /m2=0.9523. . ., m2 /m3=0.9756. . ., and m3 /m4=1. If we
choose the mass ratios to be slightly larger than these critical
ratios, we always obtain periodic orbits that contain exactly
eight collisions. The order of the collisions is always the
same and is given by C1C2C3RC3C2C1L. If we choose any of
the mass ratios mi+1 /mi to be slightly smaller than the ratios
required for collapse, we obtain a situation with many more
orbits. For example, if we choose all three ratios to be 1%
larger than the critical ratios, we obtain periodic orbits that
contain 17, 18, 25, 26, 28, 29, 32, 33, 70, and 132 collisions.
As e1, e2, and e3 get closer to unity, the number of possible
orbits increases dramatically. Similar behavior is found for
systems containing other numbers of particles.

It is straightforward to generalize the results for two-
particle systems to the case where the coefficient of restitu-
tion between the right particle and the stationary wall can
take a general value ew. In this case, the simplest orbit
collapse occurs at

m =
ewe + 1

e + ew
.

We use this result to derive the mass ratios required to cause
collapse for P particles and use this to choose the mass ratios
so that the resulting orbits have the simplest possible
structure with the fewest possible number of collisions.

Motivated by the results for two particles, we can con-
sider a system containing P particles and choose the two
particles closest to the stationary wall to have the mass ratio

mP

mP−1
=

eweP−1 + 1

eP−1 + ew
.

Numerical simulations show that the particle closest to the
stationary wall will rapidly become closely trapped against
the stationary wall. One can show that, once the particle is
trapped against the wall, the system essentially has a wall
with coefficient of restitution eP−1ew. Therefore, the system
of P particles and stationary wall with coefficient of restitu-
tion ew is effectively reduced to a system of P−1 particles
and a stationary wall with coefficient of restitution eP−1ew.
Next, the �P−1�th particle will also collapse onto the effec-
tive wall if the mass ratio between the �P−1�th and
�P−2�th particle is

mP−1

mP−2
=

eweP−1eP−2 + 1

eP−2 + eweP−1
.

This then leads to a system that effectively contains P−2
particles with a stationary wall with coefficient of restitution
eP−1eP−2ew. We can follow the same procedure to find masses
for which all particles collapse. Without loss of generality,
we choose m1=1, and then total collapse �in which P−1
particles are trapped against the wall� will occur for

mi = �
j=1

i 1 + ew �
k=j−1

P−1

ek

ej−1 + ew�
k=j

P−1

ek

.

For ratios larger than these collapse ratios, we obtain the
simple unique orbit analogous to the two particle case, but if
any of the ratios are smaller than the collapse ratios, we
obtain nonunique orbits, which may contain large numbers
of collisions. Therefore, we have shown the phenomenon of
orbit collapse is not a special feature of two-particle systems,
but a generic feature in many-particle systems.

The case of P particles of equal mass has been carefully
considered by Yang �17�. He found that nonunique orbits
existed in this case. This corresponds exactly to the case
where the mass ratios mi+1 /mi are slightly smaller than the
ratios required for collapse. As e tends to unity, the mass
ratios required for collapse tend to unity and, thus, the sys-
tem with equal masses is exactly that described above. This
means that when e tends to unity, the number of possible
periodic orbits can also be arbitrarily large in multiparticle
systems.

VII. CONCLUSION

In this paper, we have considered the behavior of one-
dimensional inelastic particle systems with arbitrary masses
that travel between a vibrating wall and a stationary wall. We
have demonstrated the following generic behavior that is not
evident in widely studied equal-mass systems.

1. It is well known that if all of the particles in the system
have the same mass then the particle nearest the oscillating
wall traps, the remaining particles in the vicinity of the sta-
tionary wall �8,17�. As the coefficient of restitution tends to
unity the locations of all inter-particle collisions tend to the
stationary wall. In general, this is not the case in unequal-
mass systems.

2. We have shown that large numbers of periodic orbits
can collapse onto simple orbits at certain critical mass ratios.
These collapse points correspond to mass ratios for which all
the interparticle collisions in the orbit occur at the stationary
wall. By deriving analytic solutions for these orbits we have
shown that as the coefficient of restitution tends to unity the
number of periodic orbits that collapse onto the simple orbit
tends to infinity.

3. For a fixed value of e there are a countably infinite
number of collapse points. These critical mass ratios at
which the collapse phenomenon occur depend on the value
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of e, except for equal-mass systems, which represent a
collapse point for all values of e. Therefore, systems with
particles of equal mass are highly degenerate.

4. As one varies the mass ratio and/or the restitution co-
efficient, there are critical parameter values at which orbits
can end abruptly. This can occur in four different ways. First,
all interparticle collisions occur at the stationary wall. In this
case, the velocities of the particle nearest to the stationary
wall tends to zero. Adding an additional collision with the
stationary wall therefore leads to a continuous change in mo-
mentum and orbits change continuously. At these critical val-
ues, multiple orbits can collapse onto a single simple orbit.
Second, interparticle collisions can occur at the oscillating
wall. This leads to a discontinuous change in momentum as
an extra collision with the oscillating wall is added since the
oscillating wall adds energy and momentum to the system.
Third, some �but not all� of the interparticle collisions occur
at the stationary wall. In this case, the velocities of the par-
ticles near the stationary wall do not tend to zero. This leads
to a discontinuous change in momentum, and thus, orbits do
not change continuously. Fourth, the orbit can become

unstable to small changes in the locations of the collisions.
This differs from the first three reasons because in this
case orbits end abruptly without any interparticle collision
occurring at any of the walls.

The analysis of two-particle systems plays a crucial role
in allowing us to understand orbit collapse in many-particle
systems. In fact, the critical mass ratios required for orbit
collapse in many-particle systems can be derived directly
from the two-particle system by appropriately adjusting the
inelasticity in particle-wall collisions. With knowledge of the
mass ratios required for orbit collapse, we can select mass
ratios that give operating conditions with simple unique
periodic orbits. This gives simple and direct criteria for
avoiding chattering and obtaining simple repeatable periodic
behavior in particle systems.
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